

In this package, you will find:
 The author biography

 A preview chapter from the book, Chapter 1 'Why Should I Care

About OAuth 2.0?'

 A synopsis of the book’s content

 More information on Mastering OAuth 2.0

About the Author

Charles Bihis is a scientist and engineer from Vancouver, Canada. Earning his
degree in computer science from the University of British Columbia, specializing
in software engineering, he enjoys exploring the boundaries of technology. He
believes that technology is the key to enriching the lives of everyone around us and
strives to solve problems people face every day. Reach out to him on his website,
www.whoischarles.com, and let's solve the world's problems together!

Preface
The Internet is a thriving and dynamic ecosystem. Living and playing within this
ecosystem are many world-class services, all offering world-class technologies.
Think about the massive social graph that Facebook hosts, the most up-to-date
mapping system proudly owned and operated by Google, or the ever-growing
professional network that is available from LinkedIn. All of these companies,
and more, are presenting their world-class technologies for the world to use!

Until recently, it was very diffi cult to access these technologies in your own
applications. Each company would create their own protocols for how to access and
leverage their respective technologies. You may have heard of Yahoo!'s BBAuth,
or Google's AuthSub. These are just a couple of examples of proprietary protocols
created to allow people to leverage these company's services. Unfortunately, the
trend of creating and using proprietary protocols just doesn't scale. Enter OAuth 2.0.

OAuth 2.0 is an open protocol for delegating authorization to such services, and
it has become the standard authorization protocol used by companies around the
world. It allows developers like you and I to access these world-class technologies
and use them in our own applications! It is a fascinating problem space with an
equally fascinating and elegant solution.

I've been lucky enough to work in the Identity space for the past 7 years, and during
this time, I've been able to witness the evolution and progression of this protocol.
Mastering OAuth 2.0 is an attempt at distilling the most important parts of the
protocol, including design and usage. With a hard focus on practicality and security,
this book focuses on the parts of integration that will give application developers like
you and I the most benefi t and mileage.

As OAuth 2.0 continues to gain adoption, and more and more services become
available for developers to integrate with and leverage, I'm hoping that this book will
allow you to be able to comfortably dive in and start building the next generation of
world-class applications and technologies!

Preface

What this book covers
Chapter 1, Why Should I Care About OAuth 2.0?, introduces the OAuth 2.0 protocol,
and discusses its purpose, prevalence, and importance.

Chapter 2, A Bird's Eye View of OAuth 2.0, takes a high-level look at the OAuth 2.0
protocol and the different workfl ows it describes.

Chapter 3, Four Easy Steps, enumerates the simple steps necessary to integrate with a
service provider using the OAuth 2.0 protocol.

Chapter 4, Register Your Application, details the fi rst of these four steps which covers
registering your application with the service provider.

Chapter 5, Get an Access Token with the Client-Side Flow, discusses the complicated
topic of gaining access to a protected resource from what we call an untrusted client.

Chapter 6, Get an Access Token with the Server-Side Flow, discusses the complicated
topic of gaining access to a protected resource from what we call a trusted client.

Chapter 7, Use Your Access Token, outlines the process for exercising access to a
resource once it has been granted to you.

Chapter 8, Refresh Your Access Token, talks about the process of refreshing your access
once it expires.

Chapter 9, Security Considerations, discusses the many important security
considerations to be made in your application. This is an important topic for any
application, but is especially important given the power that this protocol allows.

Chapter 10, What About Mobile?, is a chapter dedicated to the topic of mobile devices,
including phones and tablets, and all of the considerations that come with it.

Chapter 11, Tooling and Troubleshooting, talks about how to troubleshoot issues with
your integration as well as how to appropriately handle errors so as to minimize
user interaction.

Chapter 12, Extensions to OAuth 2.0, looks at the various ways OAuth 2.0 can be
extended to satisfy a multitude of use cases.

Appendix A, Resource Owner Password Credentials Grant, takes a look at one of the
supplemental supported fl ows in the book.

Appendix B, Client Credentials Grant, takes a look at another of the supplemental
supported fl ows in the book.

Appendix C, Reference Specifi cations, enumerates the various open specifi cations that
are referenced throughout the book.

[1]

Why Should I Care
About OAuth 2.0?

As an application developer, you may have heard the term OAuth 2.0 thrown
around a lot. OAuth 2.0 has gained wide adoption by web service and software
companies around the world, and is integral to the way these companies interact
and share information. But what exactly is it? In a nutshell…

OAuth 2.0 is a protocol that allows distinct parties to share information and
resources in a secure and reliable manner.

This is the major tenet of the OAuth 2.0 protocol, which we will spend the rest of
the book learning about and utilizing. Also, in this chapter, we will introduce the
sample application that we will be building throughout this book, The World's
Most Interesting Infographic Generator.

What about OAuth 1.0?
Built with the same motivation, OAuth 1.0 was designed and ratifi ed
in 2007. However, it was criticized for being overly complex and
also had issues with imprecise specifi cations, which led to insecure
implementations. All of these issues contributed to poor adoption for
OAuth 1.0, and eventually led to the design and creation of OAuth
2.0. OAuth 2.0 is the successor to OAuth 1.0.
It is also important to note that OAuth 2.0 is not backwards
compatible with OAuth 1.0, and so OAuth 2.0 applications cannot
integrate with OAuth 1.0 service providers.

Why Should I Care About OAuth 2.0?

[2]

Authentication versus authorization
Before we dive into our discussion of OAuth 2.0, it is important to fi rst defi ne some
terms. There are two terms in particular that are pivotal to our understanding of
OAuth 2.0 and its uses: authentication and authorization. These terms are often
confl ated and sometimes interchanged, but they actually represent two distinct
concepts, and their distinction is important to understand before continuing our
discussion of OAuth 2.0.

Authentication
Authentication is the process of validating whether a person (or system) is
actually who they say they are.

An example of this is when you go to the bank to withdraw money, and you
provide your bank card and PIN to the teller. In some cases, the teller may ask
for additional identifi cation, such as your driver's license, to verify your identity.
You may recognize this in other instances when you provide your username and
password to a website, say, to view a document.

Authorization
Authorization is the process of determining what actions you are allowed to
perform once you have been authenticated.

Referring to our previous bank example, once the teller has verifi ed who you are,
they can then proceed to fulfi ll your request to withdraw money. In order to do this,
they must check whether you are allowed to withdraw money from the account that
you are requesting (that is, you are actually the owner of the account). Relating to
our website example, once you have authenticated by providing your username
and password, the website will then check to see whether you are indeed allowed
to see the document that you are requesting. This is usually done by looking up
your permissions in some access control list.

Now that we have established the distinction between these two important
concepts, we can look at what OAuth 2.0 actually is and the problems it solves.

Chapter 1

[3]

What problems does it solve?
Have you ever logged into a site using your Google account? Have you ever
posted to Pinterest and Instagram at the same time? Have you ever shared a link
to your wall from any application other than Facebook? These are all examples
of OAuth 2.0 in use!

At a high level, the OAuth 2.0 protocol allows two parties to exchange information
securely and reliably. In more practical terms, you'll fi nd that the most common uses
of OAuth 2.0 involve two things:

• Allowing a user to log into an application with another account. For example,
Pinterest allowing users to log in with their Twitter accounts. This is known
as federated identity.

• Allowing one service to access resources on another service on behalf of the
user. For example, Adobe accessing your Facebook photos on your behalf.
This is known as delegated authority.

Both of these combine to allow the creation of powerful applications that can all
integrate with each other.

Both of the scenarios mentioned in the preceding list are actually really
the same scenario. In both, the user is accessing a protected resource
on behalf of another party. In the fi rst example, the protected resource
is the user's account information, while in the second example the
protected resource is the user's Facebook photos. This will become
clearer as we explore the details of how the OAuth 2.0 protocol
handles these situations.

Federated identity
Federated identity is an important concept in identity management. It refers to the
concept that allows one service provider to allow authentication of a user using
their identity with another service provider. For instance, imagine a user that logs
into Foursquare and Amazon with their Facebook credentials. In this example,
the user only needs to maintain a single user account, their Facebook account,
which gives them access to several service providers; in this case, Facebook itself,
plus Foursquare, and Amazon. They don't need to create individual accounts
on Foursquare or Amazon, and therefore, don't need to maintain three separate
passwords. In this sense, the user's identities across these sites are federated,
as in, they are made to act as one.

Why Should I Care About OAuth 2.0?

[4]

The OAuth 2.0 Authorization Framework
Strictly speaking, the OAuth 2.0 protocol is actually an authorization
protocol and not an authentication protocol. Because of this, OAuth
2.0 alone cannot provide federated identity. However, when used
in a certain way, and in conjunction with other protocols, OAuth 2.0
can provide federated authentication, which is a key component to
federated identity systems.
See the OpenID Connect section in Chapter 12, Extensions to OAuth 2.0,
to see how the OAuth 2.0 protocol can be combined with OpenID to
provide an authentication layer on top of the authorization framework
described by the OAuth 2.0 specifi cation.

Delegated authority
Delegated authority is another important concept in the identity space. It refers to the
ability for a service or application to gain access to a user's resources on their behalf.
Take, for instance, LinkedIn, which can suggest contacts for you to add by looking at
your Google contact list. In this example, LinkedIn will be able to view your Google
contact list on your behalf. Permission to access your Google contacts has been
delegated to LinkedIn.

Real-life examples of OAuth 2.0 in action
Now that we understand the basic principles of OAuth 2.0, let's take a look at
some everyday, real-life examples of OAuth 2.0 in action:

• StackOverflow allowing you to log in with your Google account
• Posting a status update from your phone using the Facebook

mobile application
• LinkedIn suggesting contacts for you to add by looking at your

Google contacts
• Pinterest allowing you to pin something from a WordPress blog
• Sharing an article to your Facebook feed from the article itself

As you can see, if you've ever done any of these things, or anything similar,
you have probably already used OAuth 2.0.

Chapter 1

[5]

How does OAuth 2.0 actually solve the
problem?
In order to see how OAuth 2.0 solves this problem of sharing resources, let's look
at how this problem was solved before OAuth 2.0 was created.

Without OAuth 2.0 – GoodApp wants
to suggest contacts by looking at your
Facebook friends
Imagine that you have just signed up for the service GoodApp. As a new user,
you don't have any contacts. GoodApp wants to suggest contacts for you to add
by looking at your Facebook friends. If any of your Facebook friends are on
GoodApp, it will suggest that you add them.

Before the creation of OAuth 2.0, this was solved in a very insecure way. GoodApp
would ask you for your username and password for Facebook. GoodApp would
then log into Facebook on your behalf to get your friends. This interaction can be
looked at like this:

Why Should I Care About OAuth 2.0?

[6]

Here is how it works:

1. You ask GoodApp to suggest contacts to you.
2. GoodApp responds by saying, "Sure! Just give me your Facebook

username and password please!"
3. You give GoodApp your username and password for your

Facebook account.
4. GoodApp then logs into Facebook using your credentials, effectively

impersonating you, to request your friend list.
5. Facebook happily obliges, giving GoodApp your friend list.
6. GoodApp then uses this information to tailor suggested contacts for you.

Why is this a bad idea? There are fi ve key reasons:

• You have given GoodApp the power to do *anything* with your
account: This is known proverbially as giving it the "keys to the city". You
have essentially given GoodApp access to everything in your account,
as if they were you. Now imagine it wasn't GoodApp. Instead it was
NewUnknownApp. It's easy to see how this becomes very dangerous.

• GoodApp may save your password, and may do so insecurely: In order
for GoodApp to maintain access to your account, they would need to store
your credentials. The act of storing your password is an extremely bad
practice and should be avoided at all times. To make things worse, different
companies enforce different standards of security, some of which are
shockingly low.

• You are giving more chances for your password to get stolen: You are
sending your username and password across the Internet. The more times
you do this, the more risk there is for someone to steal it.

• You have to change your Facebook password if GoodApp ever gets hacked:
If GoodApp somehow got compromised, your Facebook credentials will also
have been compromised. You would then need to change your Facebook
password as a result of GoodApp getting owned.

• There is no way to revoke access: If GoodApp was acquired by EvilCorp
and started doing things that you didn't like, the only way to revoke access
would be to change your Facebook credentials.

Chapter 1

[7]

With OAuth 2.0 – GoodApp wants to suggest
contacts by looking at your Facebook friends
Now, let's take a look at that interaction, but this time utilizing the OAuth 2.0
protocol. In this scenario, GoodApp would "ask" Facebook for your friend list.
You give permission to this by logging into Facebook and approving the request.
Once the request is approved, GoodApp would then be able to fetch your friend
list from Facebook on your behalf.

Why Should I Care About OAuth 2.0?

[8]

Let's have a look at the fl ow:

1. You ask GoodApp to suggest contacts to you.
2. GoodApp says, "Sure! But you'll have to authorize me fi rst. Go here…"
3. GoodApp sends you to Facebook to log in and authorize GoodApp.
4. Facebook asks you directly for authorization to see if GoodApp can

access your friend list on your behalf.
5. You say "yes".
6. Facebook happily obliges, giving GoodApp your friend list. GoodApp

then uses this information to tailor suggested contacts for you.

Why is this better? Five key reasons to contrast the fi ve points in the
previous example:

• You aren't giving it the "keys to the city" anymore: Notice, in this example,
you aren't giving your Facebook username and password to GoodApp.
Instead, you are giving it directly to Facebook. Now, GoodApp doesn't
have to even worry about your Facebook credentials.

• Since you aren't giving your credentials, GoodApp no longer needs to
store them: With your authority delegated from Facebook, you don't need
to worry that GoodApp is storing, or even seeing, your Facebook password.

• You send your password across the Internet less frequently: If you
already had an active session with Facebook, you actually wouldn't need
to reauthenticate with them. If GoodApp has federated identities with
Facebook, you would have to send your password even less frequently.

• You don't have to change your Facebook password if GoodApp ever gets
hacked: This is because of the next point.

• There is a way to revoke access: OAuth 2.0 provides the ability for a
service provider to revoke access to a client. If GoodApp ever got
compromised, or got acquired by Evil Corp, you could go to Facebook
and revoke GoodApp's access.

Who uses OAuth 2.0?
In the previous section, we mentioned that OAuth 2.0 has become one of the most
important protocols for applications and service providers today. But how important
is it? Here is a short, non-exhaustive list of some of the biggest supporters of the
OAuth 2.0 protocol, along with some of the capabilities that they provide:

• Google: You can leverage a multitude of Google's services by interacting
with their APIs via OAuth 2.0

Chapter 1

[9]

• Facebook: Facebook's social graph is accessed via OAuth 2.0 and allows
users to do a tremendous amount of things, including posting to their wall
and sending messages

• Instagram: Instagram allows you to access a user's feed and post comments
and likes

• LinkedIn: Post comments, share links, and gather engagement statistics via
the LinkedIn APIs

• Spotify: Query Spotify's massive music catalog and manage user's playlists
using Spotify's APIs

• Foursquare: The Foursquare API lets you look up users and places from all
over the world

There are many, many more companies that use and support the OAuth 2.0 protocol.
This gives developers an enormous amount of power to create amazing applications
that can leverage all of these world-class services.

Introducing "The World's Most
Interesting Infographic Generator"
The best way to learn is simply by doing it. So, to learn the concepts of
OAuth 2.0, we will be building an application throughout this book that will
integrate with Facebook. It will be called The World's Most Interesting Infographic
Generator. It will allow a user to log in with their Facebook account, request their
profi le data and a list of their most recent posts, and return interesting statistics
about their posting habits. You can see a working example of this application at
www.worldsmostinterestinginfographic.com, or www.wmiig.com for short.

Summary
In this chapter, we took an introductory look at what OAuth 2.0 is and how it is
used all around us. We discussed the benefi ts that this protocol gives us and even
looked at the kind of adoption that has taken place in the industry. It has become
one of the most, if not the most, used and adopted authorization protocols on the
Internet due, in large part, to the power that it gives application developers,
start-ups, and corporations alike, to share information.

In the next chapter, we will look at how OAuth 2.0 provides these benefi ts by
looking at how OAuth 2.0 actually works under the hood. Get ready!

